112 research outputs found

    The Hymenoptera Genome Database

    Get PDF
    The Hymenoptera Genome Database (HGD) is an informatics resource supporting genomics of hymenopteran insect species. This relational database implements open-source software and components providing access to curated data contributed by an extensive, active research community. HGD includes the genome sequences and annotation data of honey bee _Apis mellifera_ and its pathogens ("http://BeeBase.org":BeeBase.org) the parasitoid wasp _Nasonia vitripennis_ ("http://NasoniaBase.org":NasoniaBase.org) and a portal to the genomes of six species of ants. Together, these species cover approximately 200 MY in the phylogeny of Hymenoptera, allowing to leverage genetic, genome sequence, and gene expression data, as well as the biological knowledge of related model organisms. The availability of resources across an order greatly facilitates comparative genomics and enhances our understanding of the biology of agriculturally important Hymenoptera species through genomics. HGD has supported research contributions from an extensive community from almost 80 institutions in 14 countries. Community annotation efforts are made possible thanks to a remote connection to a Chado database by Apollo Genome Annotation client software. Curated data at HGD includes predicted and annotated gene sets supported with evidence tracks such as ESTs/cDNAs, small RNA sequences and GC composition domains. Data at HGD can be queried using genome browsers and / or BLAST/PSI-BLAST servers, and it may also be downloaded to perform local searches. We encourage the public to access and contribute data to HGD at "http://HymenopteraGenome.org":HymenopteraGenome.org.

This poster contains material included in an article accepted for publication in Nucl. Acids Res.©: 2011. The Database Issue. Published by Oxford University Press

    Representing glycophenotypes: semantic unification of glycobiology resources for disease discovery.

    Get PDF
    While abnormalities related to carbohydrates (glycans) are frequent for patients with rare and undiagnosed diseases as well as in many common diseases, these glycan-related phenotypes (glycophenotypes) are not well represented in knowledge bases (KBs). If glycan-related diseases were more robustly represented and curated with glycophenotypes, these could be used for molecular phenotyping to help to realize the goals of precision medicine. Diagnosis of rare diseases by computational cross-species comparison of genotype-phenotype data has been facilitated by leveraging ontological representations of clinical phenotypes, using Human Phenotype Ontology (HPO), and model organism ontologies such as Mammalian Phenotype Ontology (MP) in the context of the Monarch Initiative. In this article, we discuss the importance and complexity of glycobiology and review the structure of glycan-related content from existing KBs and biological ontologies. We show how semantically structuring knowledge about the annotation of glycophenotypes could enhance disease diagnosis, and propose a solution to integrate glycophenotypes and related diseases into the Unified Phenotype Ontology (uPheno), HPO, Monarch and other KBs. We encourage the community to practice good identifier hygiene for glycans in support of semantic analysis, and clinicians to add glycomics to their diagnostic analyses of rare diseases

    KG-COVID-19: A Framework to Produce Customized Knowledge Graphs for COVID-19 Response.

    Get PDF
    Integrated, up-to-date data about SARS-CoV-2 and COVID-19 is crucial for the ongoing response to the COVID-19 pandemic by the biomedical research community. While rich biological knowledge exists for SARS-CoV-2 and related viruses (SARS-CoV, MERS-CoV), integrating this knowledge is difficult and time-consuming, since much of it is in siloed databases or in textual format. Furthermore, the data required by the research community vary drastically for different tasks; the optimal data for a machine learning task, for example, is much different from the data used to populate a browsable user interface for clinicians. To address these challenges, we created KG-COVID-19, a flexible framework that ingests and integrates heterogeneous biomedical data to produce knowledge graphs (KGs), and applied it to create a KG for COVID-19 response. This KG framework also can be applied to other problems in which siloed biomedical data must be quickly integrated for different research applications, including future pandemics

    Gene content evolution in the arthropods

    Get PDF
    Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity

    The Medical Action Ontology: A tool for annotating and analyzing treatments and clinical management of human disease.

    Get PDF
    BACKGROUND: Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. METHODS: MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. FINDINGS: MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. CONCLUSIONS: MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). FUNDING: NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04

    The Ontology of Biological Attributes (OBA)-computational traits for the life sciences.

    Get PDF
    Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focussed measurable trait data. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos

    KG-Hub-building and exchanging biological knowledge graphs.

    Get PDF
    MOTIVATION: Knowledge graphs (KGs) are a powerful approach for integrating heterogeneous data and making inferences in biology and many other domains, but a coherent solution for constructing, exchanging, and facilitating the downstream use of KGs is lacking. RESULTS: Here we present KG-Hub, a platform that enables standardized construction, exchange, and reuse of KGs. Features include a simple, modular extract-transform-load pattern for producing graphs compliant with Biolink Model (a high-level data model for standardizing biological data), easy integration of any OBO (Open Biological and Biomedical Ontologies) ontology, cached downloads of upstream data sources, versioned and automatically updated builds with stable URLs, web-browsable storage of KG artifacts on cloud infrastructure, and easy reuse of transformed subgraphs across projects. Current KG-Hub projects span use cases including COVID-19 research, drug repurposing, microbial-environmental interactions, and rare disease research. KG-Hub is equipped with tooling to easily analyze and manipulate KGs. KG-Hub is also tightly integrated with graph machine learning (ML) tools which allow automated graph ML, including node embeddings and training of models for link prediction and node classification. AVAILABILITY AND IMPLEMENTATION: https://kghub.org

    Non-Integrative Lentivirus Drives High-Frequency cre-Mediated Cassette Exchange in Human Cells

    Get PDF
    Recombinase mediated cassette exchange (RMCE) is a two-step process leading to genetic modification in a specific genomic target sequence. The process involves insertion of a docking genetic cassette in the genome followed by DNA transfer of a second cassette flanked by compatible recombination signals and expression of the recombinase. Major technical drawbacks are cell viability upon transfection, toxicity of the enzyme, and the ability to target efficiently cell types of different origins. To overcome such drawbacks, we developed an RMCE assay that uses an integrase-deficient lentivirus (IDLV) vector in the second step combined with promoterless trapping of double selectable markers. Additionally, recombinase expression is self-limiting as a result of the exchangeable reaction, thus avoiding toxicity. Our approach provides proof-of-principle of a simple and novel strategy with expected wide applicability modelled on a human cell line with randomly integrated copies of a genetic landing pad. This strategy does not present foreseeable limitations for application to other cell systems modified by homologous recombination. Safety, efficiency, and simplicity are the major advantages of our system, which can be applied in low-to-medium throughput strategies for screening of cDNAs, non-coding RNAs during functional genomic studies, and drug screening
    corecore